
AD-A162 696 BETURO PACKAGE UPDWT: MEN FjfjjjJflpfRjj
TO THE GETAMO PACKRO(U) DEFER~qm
ATLANTIC DARTMOUTH (NOVA SCOTIA) 5HALESI

UNCLSSIFE DR-TC-85/3121F/ 92NL

,mffllf.......

L[> -- : , __ __ _, _ _ -.A .--... . ---- A._ ... -. . j \,. .

1.0 136 -

11111 E11 .8

ia

1111il.25 Jil 1.4 1.6

MICROCOPY RESOLUTION TEST CHART
'NATIONAL BuREAu O STADOARDS- iSG 3- A

-*

d

. - - . .

:' . : :-.' :, 0 ' -.(i : : '" " " ":. ":,'-- ., - "-.:' , ' . ":":" '- .- " -- , .--- - . -. " .*A *, : , - " - - - ---

UNLIMITED DISTRIBUTION/

National Defence Deense Nationale
Rsarch nd Bueau dRechrche AGS18

DeeomntBac0t vW nn

(0TCNCLCMUIAIN8/1

GETWRD PACKAGE UPDATE:
NEW FEATURES AND MODIFICATIONS

TO THE GETWRO PACKAGE

David Hally

DTlCS LECT
DEC26

*U Defence - Centre de
*Research Recherches pour la

Establishment D6fense
Atlantic A ln iu

]11This document has been cP''v-i

Cwad ist~btif is Unlimited.

85 12 ,Z0117

*DEFENCE RESEARCH ESTAIUSHMENT ATLANTIC CENTRE DE RECHERCHES POUR LA D(FENSE ATIANTIQUE
9 GROVE STREET P.O. BOX 1012 0 GROVE STREET C. P. 10 12

DARTMOUTH. M.S. TLPOEDARTMOUTH. MAEL
82Y 327 (9021 426.3100 82Y 3Z7

p.%

UNLIMITED DISTRIBUTION

U * National Defence D6fense Nationale
RAmwch Ad Burem do Rschsmqm
WNW~apuf Branch et Oi-sioppmsn t

GETWRD PACKAGE UPDATE:
NEW FEATURES AND MODIFICATIONS

TO THE GETWRD PACKAGE

David Hally

AUGUST 1985

Approved by T. Garrett Director/Technology Division

OISTRIUTION APPROVED BY

D/To

TECHNICAL COMMUNICATION 85/312

Establishment DWfense

Atlantic Atlantique

-This document has been approvedGana __ _ _ _ _ _

f'r pi.blic ralease and sale; its, dAiIbution is unlimited. ..

E 23 1985

.

,**.. ... * . .Z.

Abstract

The GETWRD Package is a library of procedures designed to ease the
Implementation of command languages using FORTRAN 77. It allows the user to interpret a
wZord of user input by matching It with one of the entries in a user-supplied dictionary.
Features designed to increase the friendliness of the program/user interface include a
type ahead facility, recognition of abbreviations, word completion and understandable
error messages.

This memorandum describes enhancements to the GETWRD Package. While most of
the enhancements are of most benefit to the programmer, a major improvement to the
program/user interface is the Inclusion of a spelling corrector which will catch most
typographical errors committed by the user. Other improvements Include the ability to
interpret the word of input as a simple string with no dictionary matching, a logical
variable, the answer to a Yes-No question, or a number in a specified range; greater
flexibility for the programmer in formatting prompt and help messages; and a sorting
routine which can be used to ensure that the dictionary is In alphabetic order.

All changes have been Implemented to be upwardly compatible with the original
version of the GETWRD Package so that no changes need be made to existing code
which calls GETWRD Package procedures.

ii

Le progiiel GR'NRD oat 'ins bibliot&que do prot6dures destinos
i facilitor la miss on oouvre do langages do comiaando faisant appol au
FORTRAN 77. Ce progiciel permot i llutiisateur d'intrpriteor 'in not
d uno entr~e do dorm6es on appariant e not i 'in de cinux qui sont.
contonus dans 'in dictionnaire fourni par i'utiisateur. Divorses
fonctions - commands anticipfio, reconnaissance des abr6viations, capacit6
do compiter los mots ot messages d' errours compr6honxibles - accroissont
la faciiit6 d'utilization du systims.

Lo pr~sont document d6crit les perfetionnomentsa pport~s aui
progiciol GETWRD. Bion quo la piupart do es tbangoments concernont le
progrwimseur. Ilusager b6n6ficio aussi d'uno am6lioration importante; on
of tot, 'in dispositif do corroction des f autes d' orthograpbso pormat
d6sormais do supprimer la majoriti des arreurs typographiques c035ies
par l'usager. Parmi les autres nouveautis, citons aussi ia capacit6
C' interpr~tor 'in not C' introduction comme uno simple suito do caractbros
sans 1 'apparier aux mots du die tionnaire ot C' intorpr6tor 6galmnt. 'in
variablo logique, la r~ponso (oui-non) i 'ins question ainsi qu'un nombro
dans 'no fourchotto donn~e. Le systems of fre sussi au programour plus
do soupiesso dons la miso on forms des mossagos guide-oprateur St. des
messages SOS at 'in programs do tri qui permst do a 'assurer quo le
dictionnairo out on ordro alphab6tiquo.

Taus los changemonts introduits sont i compatibiliti asendant*
avoc le progiciel GETWRD original, do sorto qu'ii nest pas n6cessaire do
modifier ls code d' appel actual dos prot~duros du progiciel.

0j 1

Ad

Table of Contents

Section Page

AbstractI

1. INTRODUCTION 1

2. USE OFTHENEW FEATURES

2.1 FORMATTING ENHANCEMENTS 1
2.2 CORRECTION OF TYPOGRAPHICAL ERRORS 4
2.3 CORRECTION OF AMBIGUOUS WORD COMPLETIONS 6
2.4 INPUT OFCHARACTER STRINGS .o..o. .o.o.o.o.*.... B
2.5 INPUT OF LOGICAL VARIABLES AND YES-NO ANSWERS a
2. 6 INPUT OF NUMBERS IN ASPECIFIED RANGE 7
2.7 SORTING THE DICTIONARY o . 7
2.8 MODIFICATIONS TO UPCASE o.. 9
2.9 FUNCTION LENI 9
2.10 VARIABLE INITIALIZATION.......... 9

3. A SAMPLE PROGRAMd9

4. CONCLUDING REMARKS. 15

Appendix Page

A. Implementaton ofthe NowFeatures 17
A.1 CHANGESIN DATA STRUCTURES 17
A.2 MODIFICATIONS.TO INDIVIDUAL GETWRD PACKAGE PROCEDURES . * . . 1

A.2.1 Subroutine DELETE. 18
A.2.2 Logical Functon DICCHK...... 19
A.2.3 Logical Function GETNUM 19
A.2.4 Logical Function GETWRD........ 20
A.2.5 Logical Function PRMPT 21
A.2.6 Subroutine UPCASE 21
A.2.7 Logical Function WRDTRM..... 22

A.3 NEW PROCEDURES IN THE GETWRD PACKAGE 22
A.3.1 Logical Function CHOOTE 22
A.3.2 Logical Function CORSPI...... 23
A.3.3 Logical Functon GETLOG...... 25
A.3.4 Logical Functon GETSTR.......... 28
A.3.6 LogicalIFunction GETYN.... 28
A.3.6 Logical Functon GNMRNG...... 28
A.3.7 Subroutine INTVAR....... 30

iv

A.3.8 Integer Function LENl . . 30
A.3.9 Logical Function QUOTED... 31
A.3.10OSubroutine SORTCT.... 32
A.3.1 1 Logical Function WORDOK... 33

References....... 35

Subject Index36

V

I INTRODUCTION

The GETWRD Package' is a library of procedures designed to ease the
Implementation of command languages written in FORTRAN 77. The procedures provide a
friendly program/user interface with very little effort by the programmer. Among the
features of the GETWRD Package in Its original version were a type ahead facility,
command completion, recognition of abbreviated commands, the ability to enquire about
possible valid input, and controlled aborts (i.e.the program will abort only when the user
requires it to). Several procedures have been added to the original version of the
GETWRD Package and several of the existing subroutines have been enhanced. All
modifications are completely compatible with any existing code which uses the original
package so that no changes to existing programs need be made to use the updated
versions of the procedures. Most of the modifications will be noticed only by
programmers using the GETWRD Package. They are offered several new features which
will widen the applicability of the package and its ease of use. These are the ability to
have complicated formats for prompts and help messages, a tagged sorting subroutine
which will sort the dictionary into alphabetical order, the ability to input character strings
that will not be matched with dictionary entries, a procedure for returning a yes-no
answer, a procedure for returning the value of a logical variable, and the ability to Input
numbers which are restricted to a specified range. However, there is one major new
feature that will be noticed by users of programs In which the GETWRD Package is
invoked: a spelling correction facility has been added that will catch many typographical
errors and much reduce time wasted re-entering commands due to slips of the finger.

2 USE OF THE NEW FEATURES

In the following sections the use of the new features is described in detail. The
manner in which they have been Implemented Is described In Appendix A.

2.1 FORMATTING ENHANCEMENTS

One of the limitations of the original version of the GETWRD Package was the lack
of control the programmer had over the format of the prompt and help messages. These
messages were passed to the GETWRD subroutines In the character variables PROMPT
and HLPMSG respectively, and written, when needed, on a single line of the terminal
screen. If the help message was Invoked, it was automatically followed by the list of
allowed commands, one command per line following the help message. By setting flags In
the common block / FMTFLG / in the new version, the programmer may create messages
having much more complicated formats. The programmer is given the option of having the
variables PROMPT and HLPMSG Interpreted as a simple string as before, or as a format
specifier which when used In a WRITE statement will result In a formatted message. The
latter option, while slightly more complicated to use, allows the programmer much greater
freedom in the appearance of the messages. The form of the WRITE statement used is
simply,

WLRI TE (UN! TNO, HLPMSG)

or

......... "........." ".,......" .. ". •..-,.......-./

2 Section 2.1

WRITE (UNI TNO. PROMPT)

In the latter case, If the buffer is not empty, the writing of the prompt is Immediately

followed by the writing of the buffer contents up to the current position:

URITE(UNITNO,' ("+"AS)')BUFFER(:BUFPS)

The '+' in the format string suppresses the line-feed normally Inserted before BUFFER Is
written: thus, BUFFER will always be written on the same line as the last line of the

*prompting message. Thus, the prompt format specifier in PROMPT, should always contain
a slash, /, to start a new line, or a dollar sign, $, to suppress the carriage return normally

* Inserted at the end of the execution of a WRITE statement Otherwise the contents of
the buffer will be written at the start of the last line of the prompt, overwriting whatever
has been written there. Note that a dollar sign as a carriage return suppressant Is a
widely used but non-ANSI convention which may not be allowed on some computers (see
Appendix E, Reference 1). As an example, suppose the following prompt spanning three
lines were to appear on the terminal screen:

Enter a new number between 1 and 18:

->NEW-NUMBER

where 'NEW-NUMBER' is what is currently in the buffer. This may be achieved by setting
PROMPT to the following format string:

PROMPT * "(" Enter a now number between 1 and 18:"/5X,"->"$)'

* The dollar sign at the end of the prompt suppresses the carriage return that would
- normally be inserted after the WRITE statement so that when the buffer contents are
* written after the prompt they will appear to the right of the arrow, 'a>'. If the $ was
". omitted the prompt would appear as

Enter a neow number between 1 and 18:

NEW-NUMBER

the buffer contents having overwritten the arrow. If a slash were used Instead of a
dollar sign, the buffer contents would appear on the following line:

Enter a now number between 1 ant 18:

*.-L NEW-NUBER

Note that within the format string, single quotes must be replaced by two single quotes In
accordance with the FORTRAN 77 standard for representing single quotes in character

- strings. Unfortunately, this often makes the format statements difficult to read. To avoid
this difficulty, the programmer Is allowed the option of replacing all single quotes within
the format string with double quotes. In the example above, PROMPT could be set to

PROMPT * '(" Enter a new number between 1 and 18."//5X,"->'$)'

-•.o......-..
. S *.-. ..° .o ° • , ° S• ° * *. . . . 5-....•o.,°, . .- .• °° .- •° °. . o, • -**-, - .. .° ..

Section 2.1 3

Within the GETWRD Package the double quotes are replaced by single quotes before the
string is used in the WRITE statement. In order to allow the natural use of double quotes,
the replacement of single by double quotes is only an option which may be turned on by
setting a flag in the common block / FMTFLG /.

The programmer is also allowed greater freedom in the way that the list of available
commands is written following the help message. The list may be suppressed altogether.
This is often appropriate when the dictionary is very short and the option- can be
included in the help message Itself. For example, if the dictionary consists only of the
two words 'NO' and 'YES', an appropriate help message might be

Enter YES or NO.

and the listing of the allowed commands is then superfluous. When the dictionary is large,
the listing of one allowed command per line often means that the full dictionary cannot
appear on a single terminal screen. For this reason the programmer is now allowed the
option of specifying the number of allowed commands to be printed per line. The default
is one per line in keeping with the original version of the GETWRD Package. Thus, by
specifying the number of allowed commands per line to be 3, a help message which.
formerly appeared as

Enter one of the fol lowing commands
ABORT
CEASE
DESIST
DIE
EXIT
G I VE-UP
STOP
SURRENDER
WITHER

would appear as

Enter one of the following commands.
ABORT CEASE DESIST
DIE EXIT GIVE-UP
STOP SURRENDER WITHER

The separation between each column of commands is three spaces. It Is up to the
programmer to ensure that the horizontal extent of the commands will not overflow the
terminal screen.

The formatting options described above are invoked by the programmer by setting

the values of flags in the common block / FMTFLG/:

COMMON / FMTFLG / IPMT, IHLP, IQUOT, NACPL

where

IPMT a 0, Indicates that PROMPT is to be treated as a simple string as in the original
version of the GETWRD Package. This Is the default.

x 1, Indicates that PROMPT is to be treated as a format specifier.

. . /

4 Section 2.1

IHLP = 0, indicates that HLPMSG Is to be treated as a simple string as in the original
version of the GETWRD Package. This is the default.

= 1, indicates that HLPMSG is to be treated as a format specifier.

IQUOT a O, indicates that internal conversion from double quotes to single quotes will
not occur. This is the default.

a 1, indicates that double quotes will be converted to single quotes by the
GETWRD procedures.

NACPL x The number of allowed commands per line to be written after the help message.
If NACPL is zero, the allowed commands will be suppressed completely. The
default value for NACPL is 1.

2.2 CORRECTION OF TYPOGRAPHICAL ERRORS

An annoying feature of the original GETWRD Package is that, If the user makes a
mistake on input, then when prompted to correct the mistake all further input stored in
the buffer is lost. If the type ahead facility has been used, a lot of typing may be
wasted over a simple typographical error. For example, If when prompted the user enters

->MOVE THE SLID UP 2 AND THE ASTERISK DON 4

* meaning the third word to be 'SQU' rather than 'CUQ' so that It would match the dictionary
. word 'SQUARE', then the original version of GETWRD would respond

?? Word not in dictionary

->MOVE THE S

and await further input. All the remaining words in the buffer would have been lost The
* new version of GETWRD realizes that the user probably meant 'SQU' and responds instead

?? rod not in dictionary

Did you mean 'SDU' for 'SUQ' to match with 'SQUARE'? (Y or N)

If the user responds 'Y', the mistake will be corrected in the buffer, and the correct
match returned from GETWRD. The user will not be reprompted and the remainder of the
buffer will be processed normally. If the user enters 'N', then there will be a new prompt

*. for further Input and the remainder of the buffer will be lost.

The algorithm used to catch typographical errors is implemented in the subroutine
CORSPL. It Is. derived from an algorithm of Durham, Lamb and Saxe2 and relies on the
observation that most typographical errors fall in one of four categories:

1) a single character is missing from the word,

2) an extra character is contained in the word,

.b. . .

Section 2.2 5

3) two adjacent characters are transposed, or

4) a single character has been replaced by an incorrect character.

CORSPL takes the current word in the buffer ('SUQ' in the example above), then checks
each dictionary word in turn to see if it could be identified with the buffer word by one of
the four transformations above. If the dictionary word can be matched in this sense, the
user will be prompted and asked if that is what was meant. If no dictionary words can be
matched, then the simple error message will be written and the user reprompted, losing
the remainder of the buffer.

2.3 CORRECTION OF AMBIGUOUS WORD COMPLETIONS

Another mistake which often causes loss of user Input Is when the completion
character is used but a unique dictionary word is not identified. For example, suppose
when prompted the user enters

->MOVE THE SS UP 2 AND THE ASTERISK DOWN 4

meaning the third word to match with 'SQUARE'. However, In the example, 'STAR' Is also a
dictionary word. The original version of GETWRD would respond

?? Word completion not unique

=>MOVE THE S

and await further input. All the remaining words In the buffer would be lost. The new
version of GETWRD tries to recover from this error by prompting the user for the correct
word:

?? Word completion not unique

Did Wou mean 'S' to match with 'SQUARE'? (Y or N)

If the user responds 'Y, the 'S' in the buffer will be substituted by the full word 'SQUARE'
and the match returned from GETWRD. The user will not be reprompted and the remainder
of the buffer will be processed normally. If the user enters 'N', the next possible match
will be tried:

Did you mean 'S' to match with 'STAR'? (Y or N)

If the user again answers 'N' and no further words in the dictionary begin with S, the user
will be reprompted for further input and the remainder of the buffer will be lost. Since the
user did not wish any of the allowed completions of the word, the Input should begin with
either the Delete Letter Character, the Delete Word Character or the Abort Character In order to
clear the 'S' from the buffer.

.. ..

.'
- .' .," .:_& Z' - " _,.: .." ". . .;- -' ..''.' .',X .', ' . , .', .',,'.,'- -.:.' ". '..-.,' -, ",, .',',,',,', ", '..-, ," -."-.'-,".,"• " " .*.

6 Section 2.4

2.4 INPUT OF CHARACTER STRINGS

The original GETWRD Package allowed two forms of Input to the buffer: strings,
whose words were to be matched with dictionary words, or numbers. A drawback of the
original library was the inability to allow the user to input other data types such as strings
which would not be matched with dictionary words, or logical variables. For example, a
command might require the input of data from a user-specified file. An appropriate
command sequence might be

.>GET-DATA-FROM DATA.DAT

where IDATA.DAT' is to be Interpreted as a file name. Clearly It is impossible to have a
dictionary containing all possible file names. The subroutine GETSTR has been provided
as a means to input character strings which will not be matched with dictionary words. It
interprets the next word in the buffer as a string of characters and returns the word In a
character variable, STRING. The position in STRING of the last non-delimiter is returned In
the variable LENSTR. Prompting and help messages are as in GETNUM as is the presence
of an Integer error flag, IER. The user will also be warned when the word in the buffer is
to long to fit in the character variable STRING. The special Abort, Completion, Delete L4er,
Delete Word, and Help characters all retain their special functions, though as there is no
dictionary the completion character will result in a message reminding the user that word
completion is not possible. Hence, none of these characters can be Included in the Input
string. If It Is necessary that one of them or one of the delimiting characters be
accepted as part of the string, the programmer may define a Quote character which uturns
off" the character which follows it. For example, If the Quote character is set to '4', and
the remaining special characters have their default values, then the Input

->PS: cHALLY>GETIJRD. FOR

would result In STRING having the value 'HALLY>GETSTR.FOR' since '<' is the default
Delete Word character so that 'PS:' is deleted from the buffer. However,

->PS: e<HALLY>GETSTR. FOR

results In STRING having the value 'PS:<HALLY>GETSTR.FOR'. The Quote character is
passed via the common block / QUOTE /. If the Quote character is set to be one of the
delimiting characters, then It is considered undefined and none of the special characters
may be Included in the Input string. The default value for the Quote character s a blank,
which Is always one of the delimiters: i.e. the default is that the Quote character is
undefined. If the Quote character is defined and it is encountered in the buffer by the
subroutines GETWRD or GETNUM, it will simply be deleted since there is no purpose for It
In those subroutines. Note that the restriction that none of the special characters
(including the Quote character) can appear in a dictionary word still applies.

. 2.5 INPUT OF LOGICAL VARIABLES AND YES-NO ANSWERS

A logical function, GETLOG, for getting the value of a logical variable has also been
*provided. GETLOG is very similar to GETNUM or GETSTR but returns the logical variable

LVAR via Its argument list. Note that the value of the variable is not the returned value of
GETLOG. rather, GETLOG, like GETNUM, GETSTR, and GETWRD returns TRUE If a value for
the variable has been obtained, FALSE if the user has signalled an abort or If the buffer

ii- -.-.-. - .-. -, -. . . - ."-...v" --.. ." - ,

. .

.t

Section 2.5 7

has overflowed. To obtain the value of LVAR, GETLOG calls GETWRD with the simple two-
word dictionary 'FALSE', 'TRUE', then sets LVAR to its appropriate value. For example,
suppose the initial command 'PLOT-FLAGs' requires the user to set the value of the logical
variable PLTFLG. A call to GETLOG might result in the following prompt

true?>GET-FLAG=

to which the user must enter 'TRUE' or 'FALSE' or a response that will match one of those.
Note that 'T' or 'F' is sufficient.

Another similar function, GETYN returns the answer to a 'yes or no' question. The
answer is returned in a character variable, ANS, of length 1. ANS will be either 'Y' or 'N'.
Like GETLOG, GETYN uses GETWRD with the simple two-word dictionary 'NO', 'YES'.

2.6 INPUT OF NUMBERS IN A SPECIFIED RANGE

Another addition to the GETWRD Package is the subroutine GNMRNG which, like
GETNUM, allows the user to input a number, but also has the feature that the range of the
number may be specified. If the number input, RNUM, lies outside the specified range an
error message supplied by the programmer will be written. Given the lower and upper
bounds for the range, RNUMLO and RNUMHI respectively, there are nine possible ways to
specify the range depending whether the end-points are to be Included In the range or
not used at all. The range desired is specified by the Integer argument IFLAG whose
values for the different range specifications are:

IFLAG a 0 If neither limit Is used (equivalent to GETNUM),
a 1 If lower limit used Inclusively, upper limit not used: RNUMLO s RNUM,
* 2 If lower limit used exclusively, upper limit not used: RNUMLO < RNUM,
• 3 if lower limit not used, upper limit used inclusively: RNUM s RNUMHI,
• 4 If both limits are used Inclusively: RNUMLO S RNUM S RNUMHI,
z 5 If lower limit is exclusive, the upper limit Inclusive: RNUMLO < RNUM s RNUIMHI,
z 6 if lower limit not used, upper limit used exclusively: RNUM < RNUMHI,
a 7 if lower limit is inclusive, the upper limit exclusive: RNUMLO s RNUM < RNUMHI,
= 8 If both limits are used exclusively: RNUMLO (RNUM (RNUMHI

2.7 SORTING THE DICTIONARY

A subroutine, SORTCT, which sorts an array of character variables into alphabetical
order has been added to the GETWRD Package (see Appendix A in Reference 1 for the
definition of alphabetical order). SORTCT will facilitate the Implementation of programs in
which the dictionary is changed during execution. If, for example, a new command Is
added to the dictionary, it is sufficient to add It to the end of the array DICT, then invoke
SORTCT to put the new dictionary Into alphabetical order. SORTCT uses a linear insertion

sort modelled on an Integer sort procedure by George and Llu.

After the dictionary is sorted or changed It Is necessary to be able to Identify the
appropriate action to be taken when a dictionary word Is identified. For example,
suppose the dictionary is EXIT, GO-DOWN and GO-UP. The word GO-UP Is changed to
ASCEND so that the new (sorted) dictionary is ASCEND, EXIT, and GO-DOWN. But now

•

8 Section 2.7

dictionary word i corresponds to what used to be dictionary word 3 so that one cannot
use the position in the dictionary, DICPOS, to point the correct action to be taken since
code such as

IF (DICPOS.EQ.1) THEN
CALL EXIT

ELSE IF (DICPOS.EQ.2) THEN
CALL DOWN

ELSE IF (DICPOS.ED.3) THEN
CALL UP

END IF

will result In EXIT being called when the user types ASCEND. Nor can the value of the
dictionary words be used as in

IF (DICT(DICPOS).EQ.'EXIT') THEN
CALL EXIT

ELSE IF (DICT(DICPOS).EQ.'GO-DOWN') THEN
CALL DOWN

ELSE IF (DICT(DICPOS).EQ.'GO-UP') THEN
CALL UP

END IF

since now none of the subroutines DOWN, EXIT or UP will be called when the user types
ASCEND.

The solution is provided by an Integer tag array, ITAGS returned by SORTCT. If
ITAGS(J) a J for all J upon Input to SORTCT, then on output ITAGS(J) will contain the

position before sorting of the Jth dictionary word. In the example above, If on Input
ITAGS a (1,2,3) then on output ITAGS = (3,1,2). Suppose now that the dictionary is
changed a second time: GO-DOWN will be changed to DESCEND. SORTCT Is called with
the unsorted dictionary ASCEND, EXIT, DESCEND and the current tag array
ITAGS a (3,1,2). SORTCT returns the sorted dictionary ASCEND, DESCEND, EXIT, and the
tag array ITAGS a (3,2,1). Notice that the tag array gives the origtnal position of the
words in the dictionary before the first sort. The appropriate code for choosing the
action to be taken when a dictionary word is Identified is

IF (ITAGS(DICPDS).EQ.l) THEN
CALL EXIT

ELSE IF (ITAGS(DICPOS).EQ.2) THEN
CALL DOWN

ELSE IF (ITAGS(DICPOS).EQ.3) THEN
CALL UP

END IF

It is only necessary to initialize the tag array before the first dictionary sort This may be
done In SORTCT by setting the integer argument NCALL to 0. ITAGS will then be initialized
so that ITAGS(J) a J, for J a 1,NWRDS, where NWRDS is the number of words in the
dictionary being sorted. SORTCT will also increment NCALL by 1 so that on subsequent
calls the tag array will not be Initialized. Note, however, that there is no need for the
elements of ITAGS to be different from one another. A convenient way to Implement

-''.... ...*.-. '...' . '. '''' . '.*." ' . . " -",".".".". .""

." • .. .'..... .-.. . . .". ... •

L - . . -"". . , -,. % . P % -.- , - ' .*• . .-. , .j# .,. .. ' "

-. . , '

Section 2.7 9

synonyms (two commands causing similar action to be taken) is to set their tags to be the
same. In the example above, if the command ASCEND were to be allowed as a synonym
for GO-UP, then the dictionary and tags might be ASCEND, EXIT, GO-DOWN, GO-UP and
ITAGS = (1,2,3,1). This example is considered in more detail in Section 3.

2.8 MODIFICATIONS TO UPCASE

The subroutine UPCASE has been modified so that its argument may now be a
character string of any length: formerly its argument was only a single character. This
makes UPCASE convenient for converting dictionary words to upper case If they are
modified by the user, who might not type in upper case characters.

2.9 FUNCTION LEN1

LEN1 is a procedure which Is called by the spelling correction subroutine CORSPL
but which is likely to be convenient for more general use. LEN1 is an integer function
with one argument, STRING, a character string of arbitrary length. LEN1 returns the
position in STRING of the last non-blank character. It Is useful when one wishes to
suppress the printing of trailing blanks.

2.10 VARIABLE INITIALIZATION

Sometime during the initial execution of the procedures GETLOG, GETNUM, GETSTR,
GETWRD or GETYN, the default values for the special characters, the input and output
unit numbers, and the new formatting flags must be assigned to appropriate variables.
The most appropriate means to do so would be a BLOCK DATA sub-program in which initial
values of the variables were assigned in DATA statements. Then if changes to the
variable initialization were deemed necessary by the programmer, it need only be done In
one place, rather than in each of the separate procedures. Unfortunately a BLOCK DATA
sub-program would cause problems if the /LIBRARY switch were used when loading the
compiled GETWRD Package procedures. (On the DEC-20 computer, if the /LIBRARY switch
is used, only those procedures called by the main program directly or indirectly via
intermediate procedures will be loaded.) Since a BLOCK DATA sub-program is never called,
it would not be loaded and the initialization would not be done. To avoid this difficulty
initialization is done in the subroutine INTVAR which is, for all intents and purposes, a
BLOCK DATA sub-program as it has no executable statements. However, it is called by
each of GETNUM, GETSTR, and GETWRD so that it will be loaded even if the /LIBRARY
switch is used. Since GETLOG and GETYN each call GETWRD, the variables will be
initialized in these procedures too.

3 A SAMPLE PROGRAM

In this section a sample program Illustrating many of the new features in the
GETWRD Package is presented. The main program allows the user to enter one of three
commands: EXIT, GO-DOWN or GO-UP. If the command Is EXIT the program stops; If it is
GO-DOWN the subroutine DOWN Is called, if it is GO-UP the subroutine UP is called.
However, before obtaining these commands the user is allowed to change the dictionary

.,.-.- :--.....-.... .*.; %... . .: .- . -... ,... ... ,. . .,. , • - .,... .. . ,

10 Section 3

by removing commands, defining synonyms for commands, or renaming commands. This is
done in the subroutine DCCHNG which contains most of the features of interest. The
arguments to OCCHNG are DICT, the dictionary to be changed; NWRDS, the curredt
number of words in the dictionary; MXNWRD, the maximum number of words allowed in the
dictionary after synonyms have been defined (the dimension of DICT is MXLWRD which
sets an upper limit on the dictionary size); ITAGS the tag array which allows the main
program to determine the action to be taken when a dictionary word is identified by
GETWRD. Possible changes to the dictionary are obtained by entering one of the
following command strings:

REMOVE dictionary-word

RENAME dictionary-word new-name

SYNONYM dictionary-word synonym

where dictionary-word is one of the words in the dictionary DICT, and new-name and
synonym are character strings. REMOVE causes dictionary-word to be removed from the
diczionary. RENAME causes dictionary-word to be replaced by the string new-name.

.* SYNONYM causes synonym to be added to the dictionary as a synonym for dictionary-word.
The command RETURN causes control to pass to the main program listed below.

PROGRAM MOVE
C --- C
C Sample program to illustrate new features of the GETWRO Package C
C ---C

CHARACTER BUFFER*80, OICT(S)*7, HLPMSG*35, PROMPT*2
INTEGER BUFPOS, OICPOS, ITAGS(S), NWROS
LOGICAL GETWRO

DATA DICT/'EXIT','GO-DOWN','GO-UP',' ',' '/, NUROS/3/,
' PROMPT/'->'/, HLPMSG/'Enter one of the following commands'/,
* ITAGS/1,2,3,4,S/

C Call OCCHNG to allow the user to change the dictionary.
CALL OCCHNG(NWROS,S,OICT, ITAGS)

C Clear the buffer and get the next user command
. 10 BUFFER-'

BUFPOS-0
IF (.NOT.GETWRO (BUFFER,NWROS,OICT,PROMPT,HLPMSG,BUFPOSOICPOS))

" GO TO 10

C If the command corresponds to the original command 'EXIT' then STOP
IF (ITAGS(DICPOS).EQ.1) THEN

STOP

C If the command corresponds to the original command 'GO-DOWN' then
C call DOWN

ELSE IF (ITAGS(DICPOS).EO.2) THEN
CALL DOWN

C If the command corresponds to the original command 'GO-UP' then

- m.. ..n. . ..l II nnl lnl

.2 1 T- Wv-' .TP01-.1

Section 3 11

C call UP
ELSE IF (ITAGS(DICPOS).EQ.3) THEN

CALL UP
END IF
GO TO 18
END

SUBROUTINE DCCHNG(NWRDS,MXNRD,DICT, ITAGS)
C-- -----
C Subroutine which allows the user to alter a dictionary by removing C
C words, renaming words, or adding synonyms. C
C ---C

CHARACTER BUFFERs88, DICINT(4)*7, DICT(MXNWRD)*(,d, PROMPT*1a8,
* HLPMSG*88, ANS

INTEGER BUFPOS, DICPOS, DICP1, IPMT, IHLP, IQUOT, ITAGS(MXNWRD),
* NACPL, NACPLO, UNITIN, UNTOUT

LOGICAL GETSTR, GETWRD, GETYN

COMMON / FMTFLG / IPMT, IHLP, IQUOT, NACPL
COMMON / IOUNIT I UNITIN,UNTOUT

DATA DICINT/'REMOVE','RENAIE','RETURN','SYNONYM'/. NRD1I4/,
* NCALL/1/

NACPLMAXB(1,80/LEN(DICT(1)))

C Clear the buffer and got the command
1 BUFFER-'

BUFPOS-8
PROMPT-'dictionarw change? ->
HLPMSG-'Enter one of the following commands'
IF(.NOT.GETWRD(BUFFER,NWRO1,DCINT,PROMPT(:21),HLPMSG,BUFPOSi

• DICPOS))GO TO 18

C If command is RETURN return to calling program
IF (DICINT(DICPOS).EQ.'RETURN') RETURN

C Find word in DICT which is to be changed
PROMPT-'dictionary word? ->'
HLPMSG-'Which of the following words do you wish to change?'
IF(.NOT.GETWRD (BUFFER,NWRDS, DICT, PROMPT(: 19),HLPMSGBUFPOS,

* DICP1))GO TO 18

C If command was REMOVE, remove the identified word from the dictionary
C providing that there will be at least one word left. The user is
C asked to confirm the removal of the word.

IF (DICINT (DICPOS) .EQ. 'REMOVE') THEN
IF (NWRDS.EQ.1) THEN

WRITE(UNTOUT,'(/2A)')' ?? YOU CANNOT REMOVE THE ONLY ',
* 'DICTIONARY WORD'

GO TO 18
END IF
BUFFER.'
BUFPOS-8
Li-LENI (DICT (DICP1))

%..
I

L
,.,. ". .. • q. .. -o .•-. ..-... *

*12 Section 3

PROMPT.' C1X,"Do you reall1W want to delete the command I
D ICT(DICPl)(:Ll)//'?'/1X,"Answer Y or N: -")
IPIT-1
IHLP-1
I QUOT-1
NACPLO-NACPL
NACPL-0
IF(.NT.GETYN(BUFFER,PROMPT.HLPMSG,BUFPOS,ANS, IER))GO TO 10
IF (ANS.EQ.'Y') THEN

00 20 I-1,LEN(DICT(1))
01 CT (DICP1) (I; I)''

20 CONTINUE
CALL SORTCT (NUROS,OICT, ITAGS,BUFFER,NCALL, IER)
NLJRS-NWRDS-l

END IF
IPMT-10
I HLP-8
IQUOT-0
NACPLwNACPLO

C If the command is RENAME, gt the new word from the user.
ELSE IF(DICINT(OICPO .EQi.'RENAME') THEN

PROfIPT-'new word name? ->'
HLPMSG.'Enter the new word name to replace'I

* DICT(DICP 1)
IF(.NOT.GETSTR(BUFFER,PROMPT(:17),HLPMSG,BJFPOS,OICT(DICP1),

* LENSTR,IER))GO TO 10
CALL UPCASE(DICT(OICP1))
CALL SORTCT (NWRDSDICT. ITAGS,BLJFFER,NCALL, JER)

C If command is SYNONYM., add the synonym to the dictionary and set ITAGS
C so that the new word is equivalent to the old word.

ELSE IF(OICINT(OICPOS) .EQ2. SYNONYM') THEN
IF (NURDS.EQ.MXNWRO) THEN

WRITE(UNTOUT,'(/2A)')' ?? No more room in the '

* 'dictionary for synonyms'
GO TO 10

END IF
PROIIPT-' synonym name? o>'
HLPMSG 'nter the synonym for the word '//DICT(OICP1)
NWRDS-NLJRDS+1
IF(NOT. GETSTR (BUFFER, PROMPT (: 16),HLPMSG, BUFPOS,DICT (NWRDS),

* LENSTR,IER))GO TO 10
CALL UPCASE COICT (NWRDS))
I TAGS (NWRDS) -I TAGS (OICP1)
CALL SORTCT (NWROSOICT. ITAGS.BUFFER.NCALL. JER)

END IF

C Call DICCHW to check the. sorted dictionary
6ALL OICCHK(NURDS.OICT)
GO TO 10
END

Section 3 13

Comments:

1) The dictionary DICT Initially has only three words but is dimensioned to
five so that two user-defined synonyms may be added. Thus, in DCCHNG
MXLWRD is five and NWRDS is initially three.

2) A user abort at any level within DCCHNG causes the buffer to be cleared
and a new dictionary-modification command to be prompted.

3) Upon entering DCCHNG, NACPL is set so that several available commands
can be written on one line in response to the Help character. However, in
subroutine GETYN all necessary Information is contained in the prompt. It is
desired that the response to a Help character is just the reprinting of the
prompt. This is achieved by passing an empty help message, setting IHLP
to one, and suppressing the printing of available commands by setting
NACPL to zero. This causes the Help character to be completely ignored
since a WRITE statement with an empty format string does nothing at all.
If IHLP were not set to one, the blank help message would be printed
causing an extra blank line on. the terminal screen. After returning from
GETYN, NACPL is reset to its previous value and IHLP is reset to zero.

4) When setting the value for PROMPT before the call to GETYN, the integer
function LEN1 is called to determine the last non-blank character in
DICT(DICP1). It is then possible to avoid several superfluous blanks
between the dictionary word and the question mark: e.g.

Do Uou really want to delete the command GO-UP?

rather than

Do you real IwU ant to delete the command G0-UF ?

5) The prompt used when asking for confirmation of the removal of a word
(passed to GETYN) covers two lines so that it must be passed as a format
specifier. Hence, before entering GETYN, IPMT and IQUOT are set to one.
They are reset to zero after control is returned from GETYN.

6) The contents of a word to be removed are set to 1'--' (whatever
length is necessary). Since -- is the last character in the allowed alphabet
of characters, this ensures that the word will be sorted to the end of the
dictionary where It will be Ignored when NWRDS is set to NWRDS-1.

7) ITAGS is initialized in the main program and SORTCT is always called with
NCALL > 0. If NCALL is initialized to zero so that ITAGS is Initialized during
the first call to SORTCT, a problem arises If the first user command is
SYNONYM. Suppose the first user command Is 'SYNONYM GO-DOWN ASCEND'.
In that case, the first time SORTCT is called It is passed EXIT, GO-DOWN,
GO-UP, ASCEND and NWRDS = 4. ITAGS Is Initialized to ITAGS a (1,2,3,4.s)
with the star standing for an Indeterminate fifth element. This overwrites
the value ITAGS(4) a 1 which was set just prior to the call to SORTCT. In
general, it is always safest to initialize the tag array In the procedure in
which the dictionary commands are used (here the main program MOVE)
rather than In the subroutine SORTCT.

..

. • .- .- -.. . ". -, • •" . . - .• -. .. • .- . . - -, - -~ " , " .' ," -

!" . . "'"" _..,,..., ..._.. ... ,.. . . ,. ,,... ,,... . . ,,,.

L

14 Section 8

8) The strings n-name and synonyn are obtained using GETSTR. Since
these strings will become dictionary words and none of the special
characters are allowed In dictionary words, there is no point in defining a
Quote character to allow inclusion of special characters in these strings.
Hence, the Quote character is left undefined.

The following is a sample run of the program MOVE on the DEC 20 computer at DREA.
The subroutines UP and DOWN, which are not shown here, cause the simple messages
'MOVING UP...' and 'MOVING DOWN...' to be written on the terminal screen.

eEXE PS: <HALLY>MOVE,PS: <HALLY>GETWRD/LIB
LINK: Loading
[LNKXCT MOVE execution]

dictionary change? -,>?

Enter one of the following commands
REMOVE RENAME RETURN SYNONYM

dictionary change? ->syn ?

Which of the following words do you wish to change?
EXIT GO-DOWN GO-UP

dictionary word? =>SYN go-up ?

Enter the synonym for the word GO-UP

* synonym name? ->SYN GO-UP ascend

dictionary change? ->ren ?

Which of the following words do you wish to change?
ASCEND EXIT GO-DOWN GO-UP

dictionary word? ->REN go-d ?

Enter the new word name to replace GO-DOWN

* new word name? =>REN GO-D descend

* dictionary change? ->rem ?

Which of the following words do you wish to change?
ASCEND DESCEND EXIT GO-UP

*i dictionary word? .>REM go-up

Do you really want to delete the command GO-UP?
Answer Y or N: =>?

"" Do you really want to delete the command GO-UP?
Answer Y or N: ->W

. * * . .

. *. ,. *.." .- '." . '. '. , ', , ', . " ,_, r " . , , '

; ' - -aa --L *. d ra~ i ,--a i l .. j. all- .; . .~.

Section 3 15

dictionarW change? ->return

Enter'one of the following commands

ASCEND DESCEND EXIT

->ascend

MOVING UP...

=>descend

MOVING DOWN

W>exi t
CPU time 1.8S Elapsed time 1:27.19

4 CONCLUDING REMARKS

The implementation and use of several new features in the GETWRD Package of
FORTRAN 77 procedures have been described. The new features not only enhance the
user friendliness of the package, but provide greater flexibility and ease of use to the
programmer. This makes the GETWRD Package an even more useful tool for FORTRAN
programmers wishing to Implement command languages.

IS Section 4

Acknowledgement

The author would like to thank Dr.D.D.Ellis for his helpful remarks and criticisms and
for suggesting and supplying the original code (now somewhat modified) for the
subroutine SORTCT.

• " " , -" .2 .. . h -_. . , - . .. _ -, - - _. - , S ; . . : _ . . . '

Section 4 17

Appendix A

Implementation of the New Features

In this Appendix the implementation of the new GETWRD Package features Is
discussed In detail.

A.1 CHANGES IN DATA STRUCTURES

To maintain compatibility with existing programs which make use of the GETWRD
Package none of the data structures described in the GETWRD Package Manual have
been changed. However, the following new variables have been defined and are used in
several of the procedures.

IHLP = An Integer flag used to Indicate whether the character variable HLPMSG is to
be interpreted as a simple character string or as a format specifier (see
Section 2.1).

a 0, if HLPMSG is Interpreted as a simple character string
a 1, if HLPMSG is Interpreted as a format specifier.

IHLP is Initialized to 0 In a data statement in the subroutine INTVAR. It Is
passed to other procedures via the common block / FMTFLG /.

IPMT a An Integer flag used to indicate whether the character variable PROMPT is to
be Interpreted as a simple character string or as a format specifier (see
Section 2.1).

a 0, If PROMPT is Interpreted as a simple character string
a 1, if PROMPT is Interpreted as a format specifier.

IPMT Is initialized to 0 in a data statement in the subroutine INTVAR. It is
passed to other procedures via the common block / FMTFLG/.

IQUOT = Integer flag used to indidate whether double quotes In the variables PROMPT
and HLPMSG are to be replaced by single quotes.

* 0, If no substitution is to be made
* 1, If double quotes are replaced by single quotes.

IPMT Is Initialized to 0 in a data statement In the subroutine INTVAR. It is
passed to other procedures via the common block / FMTFLG/•

NACPL Integer whose value indicates the number of allowed dictionary words to be
written on each line following a user plea for help via the Help character (see
Section 2.1). If NACPL is zero none of the allowed dictionary words will be
written. NACPL Is Initialized to 1 in a data statement In the subroutine INTVAR.
It Is passed to other procedures via the common block / FMTFLG/.

QOTCHR a Character variable of length 1 containing the character to be used as the
special Quote character (see Section 2.4). If OOTCHR Is the same as one of the
delimiters then It is considered to be turned off and will have no effect.

. .• .%,", " " . , oO, , a , , . °% " *o -

18 Appendix A

QOTCHR is initialized to ' (always a delimiter) in a data statement in the
subroutine INTVAR. It Is passed to other procedures via the common block /
QUOTE/.

A.2 MODIFICATIONS TO INDIVIDUAL GETWRD PACKAGE PROCEDURES

In this section the modifications to each of the existing GETWRD Package
procedures are described. The procedures CLBUFF, DLIMIT, INSBUF, MDICW, and NXTWRD
have had no modifications.

A.2.1 Subroutine DELETE

The subroutine DELETE Is called by the subroutine PRMPT after user input. It
checks the buffer for the special Delete Letter and Delete Word characters and then modifies
the buffer accordingly. DELETE has been modified to allow the special Quote character to
"turn off" the Delete Letter and Delete Word characters.

New common block: COMMON / QUOTE / QOTCHR

Internal variables:

DELON a Logical variable which is TRUE If the current delete character is not
quoted.

DELPOS a Integer whose value Is the position in BUFFER(IBUFF:LEN(IBUFF)) of the
next Delete Letter or Delete Word character.

IBUFF a integer whose value is the position of the last Delete Letter or Delete
Word character found in the buffer. Initially IBUFF is BEGWRD 1.

IBPDM2 a IBUFF DELPOS-2 a Position In the buffer of the character preceding the
Delete Letter or Delete Word character.

QUOTON a Logical variable which is FALSE If QOTCHR is a delimiter, TRUE If It is not.
QUOTON is use to avoid repeated calls to DLIMIT.

Algorithm:

Begin
Determine value of QUOTON
Set IBUFF to BEGWRD+1
While there is another Delete Letter character beyond IBUFF in BUFFER do

DELPOS • position In BUFFER(IBUFF:LEN(BUFFER)) of Delete Letter character
If the Delete Letter character is the first character in the word delete
the Delete Letter character only

Else If QUOTON is TRUE and if the Delete Letter character is quoted set
IBUFF to IBUFF+DELPOS

Else
Delete Letter character and the preceding character
If the preceding character was quoted, also delete the Quote character
If deleted characters before BUFPOS, adjust BUFPOS

7.7 7. 7 -- -'I'

Appendix A 19

End If
End do

Set IBUFF to BUFPOS+1
While there is another Delete Letter character beyond IBUFF in BUFFER do

DELPOS = position in BUFFER(IBUFF:LEN(BUFFER)) of Delete Word character
If the Delete Word character is the first character in BUFFER then delete
the Delete Word character

Else If QUOTON Is TRUE and the Delete Letter character is quoted set IBUFF
to IBUFF+DELPOS

Else
Search for backwards In the buffer for the first non-quoted Delimiting
character
Delete all characters from the Delete Letter character back to but not
including the Delimiting character

If deleted characters before BUFPOS, adjust BUFPOS
End If

End do
Return

End

A.2.2 Logical Function DICCHK

DICCHK is used to check the dictionary for errors. The only change that has been
made Is to check that the Quote character does not appear In any dictionary words. This Is
implemented simply by extending the length of the string ENDC1 to 6 and including the
QOTCHR in It (See the GETWRD Package Manual, Appendix D.3). There Is no need to
check to see if the Quote character Is turned on, since If It Is turned off it is equal to a
delimiter which also is not allowed In a dictionary word. The common block / QUOTE / is
also included to pass the Quote character to DICCHK.

A.2.3 Logical Function GETNUM

The logical function GETNUM used to interpret the next word of Input In the buffer
as a number, has been modified In the following ways.

1) The common blocks / FMTFLG / and / QUOTE / have been included to pass
the formatting flags IHLP, IPMT, IQUOT, and NACPL and the Quote character.

2) A call to subroutine INTVAR is included to Initialize variables (see Section
2.10).

3) If IQUOT is 1, CHOOTE is called to change double quotes in HLPMSG and
PROMPT to single quotes.

4) If a Quote character Is found In the word of input It is removed since It has
no special meaning In this context.

5) If a Help character is found, the help message Is written according to thevalue of IHLP (see Section 2.1). If IHLP is 0, HLPMSG is written as a

string:

. ..

20 Appendix A

WRI TE (UNITNO,' (/lX, A) ') HLPMSG

If IHLP Is 1, HLPMSG is used as a format specifier:

WRITE(UNITNOHLPISG)

A.2.4 Logical Function GETWNRD

The logical function GETWRD used to match the next word of Input In the buffer with
. one of the words In a dictionary, has been modified in the following ways:

1) The common blocks / FMTFLG / and / QUOTE / have been Included to pass
the formatting flags IHLP, IPMT, IQUOT, and NACPL and the wote character.

2) A call to subroutine INTVAR is Included to Initialize variables (see Section
2.10).

3) If IQUOT is 1, CHOOTE is called to change all double quotes In HLPMSG and
PROMPT to single quotes.

4) If a Quote character Is found in the word of Input It Is removed since It has
no special meaning in this context.

5) If no word In the dictionary matches the word Input, logical function
CORSPL is called to determine whether a dictionary word could be matched
If allowance was made for simple typographical errors (see Section 2.2).
If a match is found the user is asked whether the the corrected word
should be matched with the dictionary word.

Algorithm:

Begin
Call INTVAR to Initialize variables

'" if IQUOT is 1 changed double quotes to single quotes in HLPMSG and PROMPT
If no charecters past present point in BUFFER then

Call PRMPT to get user input
If PRMPT returns FALSE return GETWRD a FALSE

End If

Repeat
Get next character in BUFFER
Change character to upper case
If character is word terminator

If valid word has not been found then
Clear BUFFER from present position to end
Call PRMPT to prompt user and read Input

End If
Else If character is Abort character set IER to -1 and return
Else If character Is Quote character remove It
Else

Find first possible matching word In the dictionary
If no valid word can be found then

k,-. . .. *.. . . . -

Appendix A 21

Call CORSPL to check for typographical errors
If none then

Clear BUFFER from present position to end
Call PRMPT to prompt user and read Input
If PRMPT returns FALSE return GETWRD = FALSE

End If
End if

End if
Until finished word
GETWRD = TRUE
Return position of word In dictionary

End

A.2.5 Logical Function PRMPT

The logical function PRMPT Is used to prompt the user and then to read new input
from the terminal. Subroutine DELETE is then called to process any Delete Letter or Delete
Word characters In the buffer. PRMPT has been updated to allow the character variable
PROMPT to be interpreted either as a simple character string or as a format specifier
(see Section 2.1). If Integer flag IPMT (passed via common block / FMTFLG*/) is 0,
PROMPT Is interpreted as a string, while if IPMT'is 1, PROMPT is Interpreted as a format
specifier. The WRITE statements In PROMPT are as follows.

1) If IPMT = 0 and BUFPOS r O, then PROMPT 13 written as a string and the

contents of the buffer are not written.

WRITE (UNTOUT,' (/1X,AS) ')PROMPT

2) If IPMT a 0 and BUFPOS > 0, then PROMPT Is written as a string followed
by the contents of the buffer up to BUFPOS:

WRITE (UNTOUT,' (/1X,2A$) ')PROMPT,BUFFER(:BUFPOS)

3) If IPMT = 1 and BUFPOS a 0, then PROMPT is used as a format specifier
and the contents of the buffer are not written:

WRITE (UNTOUT, PROMPT)

4) If IPMT a 1 and BUFPOS > 0, then PROMPT Is used as a format specifier
and the contents of the buffer up to BUFPOS are then written in a
separate WRITE statement:

WRITE (UNTOUT, PROMPT)
WRITE(UNTOUT,' ('''AS)')BUFFER(:BUFPOS)

A.2.6 Subroutine UPCASE

The subroutine UPCASE is used to convert characters from lower case to upper
case before attempting to match them with characters in a dictionary word. However, If

" "; - .'-.. """ 1 "" "" ". "" *"

22 Appendix A

the dictionary is to be modified by the user It Is convenient to use UPCASE to ensure that
new dictionary words are In upper case. Hence, UPCASE has been modified to accept

'- strings of arbitrary length and convert them to upper case. As pointed out in the GETWRD
* Package Manual, Appendix E, note that UPCASE is intrinsically non-ANSI since lower case
* characters are not included in the ANSI standard FORTRAN character set.

A.2.7 Logical Function WRDTRM

The logical function WRDTRM is used to process the special characters, Help
chaacter, Completio character and any Delimiting characters. WRDTRM has been modified to
allow the character variable HLPMSG to be interpreted either as a simple character string

* or as a format specifier (see Section 2.1). If integer flag IHLP (passed via common block
/ FMTFLG /) is 0, HLPMSG is interpreted as a string, while if IHLP is 1 HLPMSG is
interpreted as a format specifier. In addition, WRDTRM has been changed so that in
response to the Help characte7r, the number of allowed dictionary words written per line Is
specified by the variable NACPL (also passed via the common block / FMTFLG /). The
separation between each column of allowed dictionary words is three spaces. It is up to
the programmer to ensure that the horizontal extent of the commands will not overflow
the terminal screen.

The WRITE statements for the help message In WRDTRM are now as follows:

1) If IHLP Is 0, HLPMSG Is written as a string:

WRITE(UNITNO,' (/1X,A)')HLPMSG

2) If IHLP is 1, HLPMSG is used as a format specifier:

WRITE (L I TNO, HILPG)

WRDTRM has also been modified so that when the completion character is used but
fails to match a unique word in the dictionary, WORDOK is called to attempt to correct the
word. If WORDOK is successful, the remainder of the buffer is processed normally. This
prevents the loss of additional input In the buffer. If WORDOK falls the user is prompted
for new Input and the remainder of the buffer is lost. Previously an 'error message was
written immediately and the user prompted for new input; any words in the buffer beyond
the mistake were lost.

A.3 NEW PROCEDURES IN THE GETWRD PACKAGE

A.3.1 Logical Function CHOOTE

PuMoae

CHQOTE changes all double quotes In its argument string to single quotes. It Is used
to pre-process help messages, error messages, and prompts when these are format
specifiers (see Section 2.1).

Arguments: STRING

* c - . w . -. ,- - _ . -, . .. -

Appendix A 23

where

STRING = Character variable containing the string whose double quotes are to be
changed.

Internal variables:

LOOTE a Integer variable whose value is the position in STRING of a double quote.

Algorithm:

Begin
Do while STRING contains a double quote

Change first double quote to single quote
End do

End

A.3.2 Logical Function CORSPL

Purpose

CORSPL attempts to detect a user typographical error If GETWRD cannot find a
match between the word in the buffer and any of the dictionary words. CORSPL returns
TRUE if there is a word In the dictionary which would match a dictionary word If one of the
following modifications were made:

1) two letters were transposed,
2) one letter was changed to another letter,
3) one letter was added, or
4) one letter was deleted,

and If the user has confirmed that the corrected word Is, Indeed, the word that was

meant. The algorithm is derived from one due to Durham, Lamb and Saxe2 .

Arguments: NWRDS, DICT, BUFFER, BEGWRD, BUFPOS, DICPOS

where

NWRDS, DICT, and BUFFER are as in GETWRD Package Manual, Appendix C

BEGWRD z Integer variable containing the position in BUFFER of the first character
in the word being checked.

BUFPOS a Integer variable containing the current position in BUFFER (as In
ETWRD, GETNUM, etc.). When CORSPL is called BUFPOS will NOT be the

position of the first delimiter before the current word as It is in most
other procedures; rather, It will be the position in BUFFER of the first
character in the current word which caused a mismatch with the
dictionary words.

..................

24 Appendix A

DICPOS = The position in the dictionary of the word matched if CORSPL was
successful. If CORSPL returns FALSE, then DICPOS will have the value It
had on input.

Internal variables:

ENDWRD = Integer variable whose value Is the position in BUFFER of the last
character in the current word of input.

LCORW = Integer variable containing the length of the corrected word of user
input if a unique match is found.

LDICT = Integer variable containing the length of the current dictionary word not
Including trailing blanks.

LMATCH = The number of letters for which the word of user and the current
dictionary word match. Note that LMATCH < LWRD since If
LMATCH a LWRD there would have been a match in GETWRD (or
ambiguous words) and CORSPL would not have been called.

LWRD * Integer variable containing the length of the word of user input.

NBUFF x Integer variable containing the length of BUFFER

Algorithm:

Begin
Save DICPOS in DPSAV
CORSPL z TRUE
Find the last character in the word of user input
Convert remaining characters of user Input to upper case
Calculate LWRD
Do for each word In the dictionary

Set DICPOS to the position in DICT of the current word
Calculate LDICT, the length of the word minus trailing blanks
If LWRD > LDICT+1, go to next Iteration of loop since no match can be made
Find LMATCH
If LWRD z LMATCH+1 (there is a match by the "additional letter" or the
"incorrect letter" criteria) then

if user confirms the match correct BUFFER and return
Else go to the next Iteration of the loop
End If

End If
If LMATCH+2 s LDICT and LWRD s LDICT then

Check for transposition of letters.
If match is found

If user confirms the match correct BUFFER and return
Else go to the next iteration of the loop
End IfEnd ifEnd If

End If
If LWRD s LDICT then

Check for an Incorrect letter in the word

..... ,..........-...........-....-................-.......

Appendix A 25

If match is found
If user confirms the match correct BUFFER and return
Else go to the next Iteration of the loop
End If

End if
End If
If LWRD-1 s LDICT then

Check for an additional letter In the word
If match is found

If user confirms the match correct BUFFER and return
Else go to the next Iteration of the loop
End If

End If
End If
If LWRD+1 s LDICT then

Check for a missing letter in the word
If match Is found

If user confirms the match correct BUFFER and return
End If

End If
End do
Reset DICPOS to DPSAV
Return CORSPL z FALSE

End

A.3.3 Logical Function GETLOG

Pgja

GETLOG interprets the next word of user Input as a logical variable, returning TRUE
if successful and FALSE If the user has signalled an abort (by entering the Abor character)
or if the buffer has overflowed. GETLOG calls GETWRD to match the word of Input with
the two word dictionary 'FALSE','TRUE'.

Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, LVAR, IER

where

BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manual, Appendix C

LVAR * Logical variable containing the value corresponding to the word of Input.
The value of LVAR will be changed from Its input value only If GETLOG is
successful: I.e. If GETLOG returns FALSE, LVAR will return the same value
It had on Input.

IER * Integer error flag
" -1 If there Is a controlled abort

" -2 if the buffer has overflowed

Algorithm:

Begin

................

- " "" " ' " ," "-" " " . ".." '. . . . "' ,'.'., ' ' ' ''. . - , , " -' "'' " '' .,'' .'' . ''

26 Appendix A

Set IER to 0
Call GETWRD to match the next word in BUFFER with FALSE or TRUE
If GETWRD returns TRUE then

GETLOG r TRUE
If word matched was TRUE, LVAR u TRUE
Else LVAR - FALSE
End if
IER a 0

Else
GETLOG a FALSE
IER a DICPOS

End if
Return

End

A.3.4 Logical Function GETSTR

.:: Purpose

GETSTR interprets the next word of user Input as a simple character string,
returning TRUE if successful and FALSE if the user has signalled an abort (by entering the
Abort character) or If the buffer has overflowed. If a Help character Is found, the help
message is written according to the value of IHLP (see Section 2.1). If IHLP is 0,
HLPMSG is written as a string:

WRITE (UNITNO,' (/1X,A)')ILPISG

If IHLP Is 1, HLPMSG Is used as a format specifier:

'WR I TE (UNI TNO, HLPfII)

* If a Completion character is found an error message is written followed by the help message
as word completion is not possible in GETSTR.

Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, STRING, LENSTR, IER

where

BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manual, Appendix C

STRING * Character variable In which the Input string is returned. The value of
STRING will be changed from Its Input value only If GETSTR is successful:
i.e. If GETSTR returns FALSE, STRING will return the same value It had on
Input.

LENSTR a Integer variable containing the length of the Input string not counting
trailing delimiting characters.

IER z Integer error flag
a -1 if there Is a controlled abort
a -2 If the buffer has overflowed

. . .,.0..0 -. oj . °........,. .o.... . .. ,..,.

.,.,. ..,..-,... .. .', '.-.,..... .2,' . : , - ','. . -".',.. , .,.. , - ,..." . ., ",' . ,-.- . ,,. -

i " ' " " . . ". . . *.'.-.-, .. ., ,i -. _ -*. , . _ , , -.- - .

Appendix A 27

Common blocks: (see the GETWRD Package Manual, Section 5)

COMMON / ENDCHR / HLPCHR,CMPLT,DELLTR,DELWRD,ABORT
COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL
COMMON / QUOTE I QOTCHR
COMMON I IOUNIT / UNITINUNTOUT

Internal variables:

QUOTON a Logical variable which Is FALSE If QOTCHR is a delimiter, TRUE If It is not.
QUOTON is use to avoid repeated calls to DLIMIT.

Algorithm:

Begin
Call INTVAR to Initialize variables
Determine value of QUOTON
If IQUOT = 1 change double quotes In PROMPT and HLPMSG to single quotes
Initialize BEGWRD
If no characters past the current point BUFFER then

Call PRMPT to get user Input
If PRMPT returns FALSE return GETSTR a FALSE

End If

Repeat
Get the next character
If the character is a Quote character, set BUFPOS to BUFPOS 1
Else if the character is a delimiting character then

Set value of LENSTR
Find true length of Input string not counting Quote characters
Check that Input string will fit In the variable STRING
If It will not then

Write an error message
Call PRMPT to prompt the user for Input (the user must use the
Delete Letter or Delete Word characters to shorten the string)

If PRMPT returns FALSE, return GETSTR a FALSE
Else

Strip the QOTCHRs from the word in BUFFER
GETSTR a TRUE
Return

End If
Else If current character is the Help character then

Write HLPMSG according to the value of IHLP
Call PRMPT to get user Input
If PRMPT returns FALSE, return GETSTR a FALSE

Else If current character Is the Completion character then
Write an error message
Write HLPMSG according to the value of IHLP
Call PRMPT to get user Input
If PRMPT returns FALSE, return GETSTR a FALSE

Else if current character is the Abort character then
GETSTR • FALSE and IER • -1
Return

*

28 Appendix A

End If
Until end of BUFFER word
Return

End

A.8.5 Logical Function GETYN

Purpose

GETYN Interprets the next word of user Input as one of YES or NO, returning TRUE If
successful and FALSE if the user has signalled an abort (by entering the Abort ckaracftr) or
if the buffer has overflowed. GETYN calls GETWRD to match the word of Input with the
two word dictionary 'NO','YES'.

Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, ANS, IER

where

BUFFER, PROMPT, HLPMSG, BUFPOS are as In GETWRD Package Manual, Appendix C

ANS * Character variable of length 1 containing 'Y If the word of Input
matched 'YES' and 'N' If It matched 'NO'.

IER * Integer error flag
x -I If there is a controlled abort
* -2 If the buffer has overflowed

Algorithm:

Begin
Set IER to 0
Call GETWRD to match the next word In BUFFER with NO or YES
If GETWRD returns TRUE then

GETYN a TRUE
ANS = first letter of dictionary word matched
IER . 0

Else
GETYN =FALSE
IER a DICPOS

End If
Return

End

A.3.6 Logical Function GNMRNG

,'. pose

GNMRNG Interprets the next word of user Input as a number but only accepts It If It
.. Is within a range specified by the arguments RNUMLO and RNUMHI. GNMRNG returns TRUE
*: If successful and FALSE If the user has signalled an abort (by entering the Abort charer)

. . . .

Appendix A 29

or if the buffer has overflowed. GNMRNG uses GETNUM to obtain the number from the
buffer.

Arguments: RNUMLO, RNUMHI, BUFFER, PROMPT, HLPMSG, ERRMSG, BUFPOS, RNUM,
IFLAG

where

BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manual, Appendix C

RNUMLO = Real variable whose value is the lower end of the allowed range for the
input number.

RNUMHI a Real variable whose value Is the upper end of the allowed range for the
input number.

ERRMSG a Character variable used to write an error message If the input number Is
out of range. ERRMSG is treated just as HLPMSG: it is interpreted as a
simple string If IHLP is 0, as a format specifier If IHLP Is 1.

RNUM a Real variable containing the number input by the user. The value of
RNUM will be changed from its value before GNMRNG was called only If
GNMRNG Is successful: Le. If GNMRNG returns FALSE, RNUM will return
the same value It had before GNMRNG was called.

IFLAG z Integer flag used on input to Indicate how the end-points of the range
are to be treated, and on output to signal a user abort or buffer
overflow. On Input:

= 0, If neither limit is used (equivalent to GETNUM)
a 1, If lower limit used inclusively, upper limit not used: RNUMLO S RNUM
a 2, If lower limit used exclusively, upper limit not used: RNUMLO < RNUM
a 3, If lower limit not used, upper limit used inclusively: RNUM s RNUMHI
a 4, if both limits are used Inclusively: RNUMLO s RNUM S RNUMHI
. 6, if lower limit is exclusive, the upper limit inclusive:

RNUMLO < RNUM s RNUMHI
r 6, if lower limit not used, upper limit used exclusively RNUM < RNUMHI
a 7, If lower limit Is inclusive, the upper limit exclusive

RNUMLO s RNUM (RNUMHI
a 8, If both limits are used exclusively: RNUMLO < RNUM < RNUMHI

On output:
• -1 If there is a controlled abort
* -2 If the buffer has overflowed
• -3 If RNUMLO > RNUMHI and IFLAG on Input was 4, 6, 7, or 8

Common blocks: (see the GETWRD Package Manual, Section 6)

COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL
COMMON / IOUNIT / UNITIN,UNTOUT

Internal variables:

_ , ... , , , ., ." .,. ,~~~~~~~~~......' '..";,"...'............. ,-.....-...... . -.....-..........-.. ...-...... '......;

SO Appendix A

BPSAV a Integer variable used to save the input value of the buffer position
BUFPOS.

,%

INRNG a Logical variable which is TRUE If the Input number is in range.

*. RNMSAV a Real variable used to save the input value of the variable RNUM so that
it may be restored If the user aborts a call to GETNUM.

Algorithm:

Begin
If IQUOT Is 1 replace double quotes in ERRMSG by single quotes
If RNUMLO > RNUMHI and IFLAG is 4,5,7 or 8 set IER to -3 and return
Save RNUM in RNMSAV and BUFPOS In BPSAV
Repeat

Call GETNUM to interpret the next word In BUFFER as a number
If GETNUM returns FALSE, return GNMRNG a FALSE
If input number is In range return GNMRNG a TRUE
Else write ERRMSG according to value of IHLP
End If
Reset RNUM to RNMSAV and BUFPOS to BPSAV
Clear BUFFER past BPSAV

Until number in range Is found
End

A.3.7 Subroutine INTVAR

" Purpose

INTVAR is used to Initialize the default values for the special characters, for the

formatting flags, and for the logical input and output devices. See Section 2.10.

Arguments: none

Common blocks: (see Appendix A.1 and the GETWRD Package Manual, Section 5)

COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL
COMMON / IOUNIT / UN!TIN,UNTOUT

Algorithm:

INTVAR contains no executable statements. It is used In preference to a BLOCK
DATA sub-program to Initialize variables using DATA statements.

A.3.8 Integer Function LENI

Pups

LENI returns the length of a character variable not Including trailing blanks. Note
. that on many machines a character variable which Is not Initialized will be filled with

characters other than spaces so that In this case LEN1 will not return 0.

. - , . , • , . . . •

Appendix A 31

Arguments: STRING

where

STRING = Character variable whose length is to be determined.

Algorithm:

Begin
Do for each character in string starting from the end

If character Is not a blank, return LEN1 = position in STRING
End do
Return LEN1 a 0

End

A.3.9 Logical Function QUOTED

Puroose

QUOTED determines whether a character in the buffer is quoted or not. It assumes
that the Quote character is turned on. It is not sufficient to check whether the preceding
character is a quote character since the quote character Itself may be quoted. QUOTED
returns TRUE If there are an odd number of Quote characters Immediately preceding the
character to be checked.

Arguments: BUFFER, BUFPOS

where

BUFFER as in GETWRD Package Manual, Appendix C

BUFPOS a Integer variable whose value Is the position in BUFFER of the character
to be checked.

Common block: COMMON / QUOTE / QOTCHR (see Section A.1)

Algorithm:

Begin
Find number of Quote characters preceding BUFPOS In BUFFER
If even number of Quote characters QUOTED u FALSE
Else QUOTED = TRUE
End If
Return

End

...
= l -s . . i i i * ._-4 I' . " " i" . . •• m x

n

" ._ " q
t

i
, k

.' • qII IN
J

r q *- " • b -. **
t

... . .
I , -

q

32 Appendix A

A.3.10 Subroutine SORTCT

Purpose

SORTCT is a tagged linear Insertion sort procedure designed to sort an array of
. character variables into alphabetic order. Alphabetic order is defined by the ASCII
* collating sequence (see the GETWRD Package Manual, Appendix A). SORTCT is a

modification of an algorithm by George and Liu3.

Arguments: N, CHARS, ITAGS, CTEMP, NCALL, IER

where

N = Integer variable containing the length of the character array to be
sorted.

CHARS = Character array of length N containing the variables to be sorted.

ITAGS = Integer array of length N containing the tags by which one can
determine the original position of any word In CHARS (see Section 2.7).

CTEMP = Character variable whose length is at least as long as the elements of
CHARS. CTEMP is used as a temporary variable when swapping
elements of CHARS. For most applications using the GETWRD Package
the buffer variable BUFFER is a convenient variable to use for CTEMP.

NCALL Integer variable used as a flag. If NCALL = 0, the tag array ITAGS will
be Initialized to the identity permutation: ITAGS(J) a J, J a 1,N.
Otherwise ITAGS the input value of ITAGS will be used (see comments in
Section 2.7).

IFLAG = Integer variable use as an error flag:
= , If no error occurred
- 1,IfNsO
= 2, If CTEMP is not long enough.

Internal variables:

ITEMP = Integer variable used as temporary variable ,hen swapping elements of
ITAGS.

Algorithm:

Begin
If N s 0 return IER a 1
If LEN(CTEMP) < LEN(CHARS(1)) return IER L 2
Else IER a 0
End if

If NCALL = 0, Initialize ITAGS to the permutation identity

Do for each element of CHARS (and ITAGS) from 2 to N (K m 2,N)

b. .

:... .:. :. :..:.....-............,.:.:-......-............. ,....
.... *.

Appendix A 33

insert the current element of CHARS Into Its correct position in
CHARS(1)-CHARS(K-1). (Note that this sub-array Is already
sorted).

For every pair of elements of CHARS swapped, swap the same pair of
elements in ITAGS

End do
Return

End

A.3.1 I Logical Function WORDOK

Purpose

WORDOK asks the user for confirmation that a dictionary word matched by CORSPL
with the word of user input is, indeed, the word which the user wanted. If so makes the
correction in BUFFER and returns TRUE. Else returns FALSE. If the user types an Abort
character when prompted, WORDOK returns TRUE but DICPOS is -1. This will cause CORSPL
to return TRUE to GETWRD, which then interprets the value of DICPOS as an abort flag.

Arguments: BUFFER, BUFPOS, BEGWRD, ENDWRD, DICWRD, LDICT, LCORW, DICPOS

where

BUFFER, BUFPOS, DICPOS are as in GETWRD Package Manual, Appendix C

BEGWRD Integer variable containing the position In BUFFER of the first character
in the word being checked.

DICWRD = Character variable containing the word in the dictionary to be matched.

LDICT a Integer variable containing the length of DICWRD not Including trailing
blanks.

LCORW = Integer variable containing the length of the corrected word of user
input: i.e. DICWRD(:LCORW) is what the user should have typed.

Common blocks: (see the GETWRD Package Manual, Section 5)

COMMON / ENDCHR / HLPCHR,CMPLT,DELLTR,DELWRD,ABORT
COMMON / IOUNIT / UNITIN,UNTOUT

internal variables:

ANS = Character variable of length 3 used to obtain a Yes-No answer from the
user.

Algorithm:

Begin
Write prompt asking for confirmation of the correction of the user's input
Repeat

Obtain answer

* -T-.

• . - - -'. ." .': ":...- .' . " . ' "... .* i. i. / "
" . ."."" ".".""'. "".. . . .".".-"... .- "..".,".""...".. . .

! -3 *' -"-'_4b imi litm il iiiii l lll i ii/ "-" "•"- °-" - "" "" ' ' ' """•'-"""'"" "d "' i" " .- .' "".
%

.
. " % ' '% ' '

" :a "" "

ft

3i4 Appendix A

If answer Is YES
WORDOK a TRUE
Correct BUFFER setting BUFPOS to the delimiter following the word

Else If answer Is NO
WORDOK a FALSE

Else if user has signalled an abort
WORDOK a TRUE
DICPOS z -1

Else Write error message
End If

Until valid answer received
Return

End

'.

References

1. Hally,D.; Dent,C.A.; GETWRD Package Manual, DREA TM/84/D)

2. Durham,i.; Lamb,D.A.; SaxeJ.B.; "Spelling Correction In User Interfaces", Comm. A.C.M.
Z&3 764(1983)

3. George,A.; Liu,J.W.; "Computer Solutions of Large Sparse Positive Definite Systems.
Ch.6, Prentice-Hall Inc., Englewood Cliffs, N.J., 1981

35

Subject Index

ABORT 27, 33 ERRMSG 29
,. Abort character 5, 6, 20, 25, 26, 27, 28,

33
ANS 28, 33 Formatting enhancements 1-4

BEGWRD 23, 33 GETLOG 6-7, 9, 25-26
BPSAV 30 GETNUM 6, 7, 9, 19-20, 23, 29
BUFFER 2, 10, 18, 20, 21, 23, 25, 26, 28, GETSTR 6, 9, 12, 14, 26-28

29,31,33 GETWRD 4, 5, 6, 9, 10,11, 20-21, 23, 24,
BUFPOS 10, 23, 25, 26, 28, 29, 31, 33 25, 28, 33

GETYN 7, 9, 12, 13, 28
GNMRNG 7, 28-30

CHARS 32
CHOOTE 19, 20, 22-23
CLBUFF 18 Help character 6, 13, 17, 19, 22, 26
CMPLT 27, 33 HLPCHR 27, 33
Common block / ENDCHR / 27, 33 HLPMSG 1-4, 10, 17, 19, 20, 22, 25, 26,
Common block / FMTFLG / 1, 3, 11, 17, 28,29

19, 20, 21, 22, 27, 29, 30
Common block / IOUNIT / 11, 27, 29, 30,

33 IBPDM2 18
Common block / QUOTE / 6, 18, 19, 20, IBUFF 18

27, 31 IER 25, 26, 28, 32
Completion character 6, 22, 26 IFLAG 29

* Correction of ambiguous word completions IHLP 3, 11, 13, 17, 19, 20, 22, 26, 27,
5 29,30

Correction of typographical errors 4-5, Input of character strings 6, 14, 26-28
20, 21, 23-25 Input of logical variables 6-7, 25-26

CORSPL 4, 5, 9, 20, 21, 23-25, 33 input of numbers In a specified range 7,
o CTEMP 32 28-30

Input of yes-no answers 6-7, 28
". INRNG 30

DELETE 18-19, 21 INSBUF 18
Delete Letter character 5, 6, 18, 21, 27 INTVAR 9, 17, 19, 20, 27, 30
Delete Word character 5, 6, 18, 21, 27 IPMT 3, 11, 13, 17, 19, 20, 21, 27, 29,
Delimiting characters 6, 17, 18, 19, 22, 30

23,26,27 IQUOT 3, 11, 13, 17, 19, 20, 27, 29, 30
DELLTR 27, 33 ITAGS 10, 32

* DELON 18 ITEMP 32
DELPOS 18
DELWRD 27, 33
DICCHK 12, 19 LCORW 24, 33
DICPOS 8, 10, 23, 33 LDICT 24, 33
DICT 7, 8, 10,13,23 LENI 9, 11, 13,30
DICWRD 33 LENSTR 26
DLIMIT 18, 27 LMATCH 24

,, LOOTE 23
LVAR 25

" ENDWRD 24, 33 LWRD 24

36

.. . *-,'., p,* .* ,,. " . • " . - *. . ,, . ., . ,. ,. -,, , - .. .-,9'-, ,-, . -,-,- ' .. ,.,,..*-,.,.., ,,. . .

MDICW 18

N 32
NACPL 3, 11, 13, 17, 19, 20, 22, 27, 29,

30
NBUFF 24
NCAU. 32
NWRDS 10, 23
NXTWRD 18

PRMPT 18, 20, 21, 27
PROMPT 1-4, 10, 13, 17, 19, 20, 21, 26,

28, 28, 29

QOTCHR 17, 18,27,31
Quote character 8, 14, 17, 18, 19, 20,

27, 31
QUOTED 31-32
QUOTON 18,27

RNMSAV 30
RNUM 29
RNUMHI 29
RNUMLO 29

SORTCT 7-9, 12, 13, 32-33
Sorting the dictionary 7-9, 13, 32-33
STRING 22, 26, 31

UNITiN 27, 29, 30, 33
UNTOUT 27, 29, 30, 33
UPCASE 9, 12, 21

Variable Initialization 9, 20, 27, 30

WORDOC '33-35
WRDTRM 22

37

UNLIMITED DISTRI8UTIqCLSSIFIED___

DOCUMENT CONTROL DATA - R & 0
tfts'.wt cIawasitagen *1 title. baft of mintt and vedesing annoteliou, anit be sneared wile" the aeieil dommntis* deaabfadll

1. ORIGIN4ATING ACTIVITY 2. DOCUMENT SECURITY CLASSIFICATION

Defence Research Establishment Atlantic

I. OOCMNT TITLE

GETMR PACKAGE UPDATE: NEW FEATURES AND MODIFICATIONS TO THE GETWRD PACKAGE

SAUT4ORIS ILast nerne. lientleam. middle uisatill

BALLY, DAVID

& OOCUMENT OATE Is.S 98 TOTAL NO. OF PAGESThNOOFAS
AUGUST 1985_______________ 44 7 moOFt% 3

Se. PROJECT Oft GRANT NO. Se& ORIGINATORS OOCUMENT NUMUSR(I

O.R.E.A. TECHNICAL COMMUNICATION 95/312

ft. CONTRACT NPA. ft. OTHESR OOCUMENT NO.(S) (Ane *Va nwimbers tha tie mao
aeired this deesuflantA

10. OISTRIBUTIOE STATEMENT

11. SUPPLEMENTARY NOTES I2. SPONSORING ACTIVITY

13; AGSTRACT

The GETWRD Package is a library of procedures designed to ease the
implementation of command languages using FORTRAN 77. It allows the user to
interpret a word of user input 'by matching it with one of the entries in a
user-supplied dictionary. Features designed to increase the friendliness of
the program/user interface include a type ahead facility, recognition of
abbreviations, word completion and understandable error messages.

This memorandum describes enhancements to the GETWRD Package. While most
of the enhancements are of most benefit to the programmer, a major improve-
ment to the program/user interface is the inclusion of a spelling corrector
which will catch most typographical errors committed by the user. Other
improvements include the ability to interpret the work of input as a simple
string with no dictionary matching, a logical variable, the answer to a Yes-
No question, or a number in a specified range; greater flexibility for the
prograer in formatting prompt and help messages; and a sorting routine
which can be used to ensure that the dictionary is in alphabetic order.

All changes have been implemented to be upwardly compatible with the
original version of the GETWRD Package so that no changes need be made to
existina code which calls GETWRD PaekaR igcairpei

39

UNCLASSIFIED - -

KEY WORDSFcommand language
* program/user interface

typographical error' correction
* input procedures

* IMSTUCIONS

1. ORIGINATING ACTIVITY: Enter the naone and address Oota fetb OTHER DOCUMENT NUMEERIS): It the documntt hew been
9nrartso issuing the document. assigned any Other document numberto (felloer by the Originator

or by the ilsoossou. also enter this nuomber(s).
7, DOCUMENT SECURIT V CLASSIPCAf0N. Enteor the ~eall

I.C.6'tv ciarvicat-on of Mhe document includIng spegoiol warning 106 DISTRIBUTION STATEMENT: Inter any limitations on
termi whenevehor avoikbla. fur~hmdifitemiftelat Nowi doc&met. other than tha4 ionfocted

by W~tVMollfiction ""stanardstatements such s:
a'. GROuP: $aier security reclessolscstn grao number Tlie three

jron. art defined in Afoondia M of the ORB Security Repulations. III "Quaified eouesters may obtain coproe. of this
do.umet from thewe defence documentation center."

3. CW.CUMISIT TITLE: Enter r he complete, opatmvent sttl in an
cacial sllers. Titles in oil cases should be wrnclassified It a (2) "Annownemhsent eond dissemination of this ct'cumet

'"uflsmnly descroptive title Connell be aseredt without Cless1Il. Is hoteisulsoriged without prior appoval from
car show tost Classificaion with the usual onecapoiteh-ltr origeitn actwiy.-
alitteiiasutinm pesrnthesa emmediasiefy fOotin the tile.

11. SUPPLEMENTARY NOTIES: Us. for additional explanatory
4. DESCRIPTIVE NOTES. Enter f" e tego of dioument. e.4 notes.

Irchroical tept. sectin-cal note or technical letter. It aopoonr-Etrte aeo h cootoee
aite, enteo the type of document. e.g. interim. progres. 12. SPONSORING ACTIVITY. nvtenm ftedprmna

* sueneV. annual or final. Give tht inclusiv'e dates when a project of fleel or laboratory sponsoringf the reseerch and
msacifie refoeting period it coveted- deveOPsient Include address

S. AUTHfOXISI: enter tlhe rsomell of auttsorlsl as shown on or 13. ABSTRACT: Entolo an ebSteet giving a brief end factluall
in the document Enter lest name, first naone. middle initiall summnary of the document. own though it m~ay aleo o
if militaryr. show rank. The nmem of the principal author is an elsewhere In the bcoy of the document itself. It is highly
Isabslute muimum requirement. desiralet that the abstract of classified documents be unclegai.

fied. EaSO ONrapv of the abstract "itl end wnth ani

6DOCUMENT OAT!: Enter the date (month. vaarl of Indication of the security classification of the Information
@wbtlmneapoval for pubflication of the document. in the paraograph (unless the document itself is univtasdsied)

represented ft ITSI. WS. IC). INt. or IUI.
* 7a.TOTAL NUMBIN OF PAGES:; The total pap count should

lo~
tow normal pagsnation Pocedurt. Lia.. enter the number, The length of fth elrttit should be limited to 20 stoigleed

of Pao" cotainoing Information. tandard fypSV4ittan ginac. 754 ~n11e long.

Th. NW.,96111 OF RIEERENCES. Inser the to-tl number of 14. KEY WORDS. Key words are technically nseenhigful teoms or
oliorefseeos cited in the difcutment. d it es that charecterote a document and could be htpful

.in catalogi the document. Key wadt should Ise selected s
as3. JPROJECT OR GRANT N#UM0ER: If poeret see the that no surit ctssf 'catIon is required. Identifiers. such aM

risoc.csble research end development prOtec Or grent numbelr equment model designation, trade name. mititery Circlet clodle
onder which the do1CUment vA was entcan mete. goeophIc location, may be used as Ir words but will

be foflloe by en sndsoetion of technical innsmll
Sis. CONTRACT NUMSER t1 1 storeprite. enter the applicalei

nuanbeor under which the douev#1t,1 was wrifteft.

m),. ?fJAt:NATOR*S DOCUMENT N$.AISERIS). Enter te
~t.o tottacevint nurrmilr byV whicht the docurment will be

.fcrsrafhvrl and co~ntrolledl byr 'he 0-osRnafln actotv. Theo

number #mutt be units to this do~uevont.

40

.b =.

FILMED

DTIC
'7-7 7:- 7

